x^2-(x^2)/4=148

Simple and best practice solution for x^2-(x^2)/4=148 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x^2-(x^2)/4=148 equation:



x^2-(x^2)/4=148
We move all terms to the left:
x^2-(x^2)/4-(148)=0
We multiply all the terms by the denominator
-x^2+x^2*4-148*4=0
We add all the numbers together, and all the variables
-1x^2+x^2*4-592=0
Wy multiply elements
-1x^2+4x^2-592=0
We add all the numbers together, and all the variables
3x^2-592=0
a = 3; b = 0; c = -592;
Δ = b2-4ac
Δ = 02-4·3·(-592)
Δ = 7104
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{7104}=\sqrt{64*111}=\sqrt{64}*\sqrt{111}=8\sqrt{111}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{111}}{2*3}=\frac{0-8\sqrt{111}}{6} =-\frac{8\sqrt{111}}{6} =-\frac{4\sqrt{111}}{3} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{111}}{2*3}=\frac{0+8\sqrt{111}}{6} =\frac{8\sqrt{111}}{6} =\frac{4\sqrt{111}}{3} $

See similar equations:

| 44,10=x+21×0,95 | | 2x+4/x-2=4/3 | | 2=-14p | | 9x-20=10x+3 | | 180=1/2h(11+7) | | -7-6(6y+6)=-3(3y+8)+3 | | -x2+3x-1.58=0 | | 8-b=8 | | x/3-2)=7 | | (x-8)/(x-8)/x=6 | | -4=3r | | (2(5x-5))=4x+10 | | 13-(9m+8)+2m=10m-4+19+8 | | -27-x=-2x+-5 | | 26=-5r+1 | | c/4−3=1 | | x+15=2x-45 | | 21=6-3d | | (2x+1)(x-4)+13=2x^2-10x | | c4−3=1 | | 11=q/5+7 | | 31-15=4(x-7) | | 7(5n+5)=2(7n-3)+22n | | 2/5f=-20 | | 100+(x-10)=180 | | 105=x-2 | | 45+5y-14=17y-14-3y | | -6=-2+2h | | 3*(3x+6)=x*(5-4) | | 0,2m+9,8=3.5m-0.1 | | 25=-3y+10 | | 75=10y-25 |

Equations solver categories